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Abstract-Simultaneous development of velocity and temperature distributions for laminar flow inside a 
parallel-plate channel is analytically studied, by adopting a linearization procedure for the velocity problem 
and solving the decoupled energy equation through the generalized integral transform technique. A 
complete solution is obtained within a wide range of the axial coordinate, from numerical evaluation of 
the integral transformed system of ordinary differential equations. In addition, approximate explicit 
solutions are provided for fast estimates in the context of applications. Several aspects are investigated, 
such as influence of transversal convection, effects of different velocity profiles, convergence of complete 

solution, and accuracy of approximate solutions. 

INTRODUCTION 

THE ANALYSIS of simultaneously developing laminar 
flows has been of great interest, as demonstrated by 
the vast literature available, in connection with a 
demand for more precise reference data by heat 
exchanger designers [l]. In the famous sourcebook of 
reference results [2], Shah and London provide an 
extensive list of contributions related to this class of 
problems, mostly in simple geometries such as circular 
tubes, parallel-plate channels, and annular ducts. 
More recent reviews [3,4], complement such a list and 
provide an indication that most previous work has 
been directed to circular tube geometry and to 
employing some kind of purely numerical technique 
to approximately solve the associated flow and energy 
equations. A commonly used approach, since the 
pioneering work of Kays [5], is that of utilizing explicit 
expressions for the velocity components obtained 
from linearization of the axial momentum equation, 
such as the better known velocity profiles by Langhaar 
[6] and Sparrow et af. [7]. The decoupled energy equa- 
tion is then numerically solved for the temperature 
distribution, eventually after neglection of the radial 
convection term [5,8,9]. For the specific situation of 
a parallel-plate channel, representative contributions 
include the integral method approach of Siegel and 
Sparrow [lo], the finite-differences solutions of 
Hwang and Fan [l l] and Mercer et al. [12], and the 
approximate analytical solution of Han [ 131. 

The exact solution of internal forced convection 
problems for the case of fully developed velocity pro- 

t Permanent address : Depto de Engenharia Meclnica, 
FEIS/UNESP, C.P. 31. Ilha Solteira, SP-15378. Brazil. 

files has been recently reviewed and presented in a 
systematic way by Mikhailov and i)zigik [14], through 
the use of the classical integral transform technique. 
This approach was then employed to produce highly 
accurate benchmark results for the extended Graetz 
problem [15], over a wide range of the dimensionless 
axial coordinates, after the related eigenvalue problem 
has been automatically and accurately solved by util- 
izing the also recently advanced sign-count method 
for Sturn-Liouville problems [14]. The approach 
described in ref. [14] is not, however, directly applic- 
able to the present simultaneously developing flow 
problem, due to the non-transformable nature of the 
resulting energy equation, which includes non-sep- 
arable velocity functions that depend on both the 
normal and axial variables. The ideas in the so-called 
generalized integral transform technique [ 16-241 can, 
however, be applied to this class of problems to pro- 
duce fully converged numerical results, obtained from 
a complete solution of the resulting coupled system of 
ordinary differential equations for the integral trans- 
formed temperature distribution. Besides, approxi- 
mate analytical solutions in explicit form are readily 
obtainable, which have essentially the same degree of 
complexity as the exact solution of the Graetz problem 
in refs. [ 14, 151. The present note brings this extension 
to the generalized integral transform technique, by 
considering explicit velocity profiles obtained by Targ 
[14,25], which are more easily computable than those 
more frequently employed in the literature [6,7]. 

ANALYSIS 

Simultaneously developing laminar flow of a 
Newtonian fluid within a parallel-plate channel is 
considered. Physical properties are assumed to be 
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DC 

W 
k 
N 

N, 
Nu(Z) 

NOMENCLATURE 

hydraulic diameter of parallel-plate 
channel, 4r, 
heat transfer coefficient 
thermal conductivity of fluid 
truncation order of system (6) 
norm of problem (3) 
local Nusselt number, h(z)DJk 

u(r, z), U(R, 2) axial velocity components 
[dimensional and dimensionless] 

MO inlet flow velocity 
u(r, z), V(R, 2) normal velocity components 

[dimensional and dimensionless] 
W(R) weight function of problem (3) 
2, z axial coordinates [dimensional and 

I Nut,,(Z) average Nusselt number dimensionless]. 
Pr Prandtl number, vjsl 
r, R normal or transversal coordinate Greek symbols 

[dimensional and dimensionless] C! thermal diffusivity of fluid 

r,, half the spacing between parallel- %, roots of transcendental equation (A4) 
plates O(R, Z) dimensionless temperature distribution 

Rl? Reynolds number, uoDJv B,(R, Z) lowest order solution (L.O.S.) 
T(r, z) temperature distribution [dimensional] p, eigenvalues of problem (3) 

T, uniform inlet temperature kinematic viscosity 

TW prescribed wall temperature ii(R) eigenfunctions of problem (3). 

temperature independent and the effects of axial con- d**;(R) 
duction, viscous dissipation and free convection are --- +pf W(R)+,(R) = 0, 

dR 
0 < R < 1 (3a) 

neglected. The decoupled flow problem is solved by a 
linearization procedure, as described in the Appendix, with boundary conditions 
providing explicit expressions for the axial and normal 
components of the velocity field. The related energy d$i(O) 
equation is then written in dimensionless form as 

~~ = 0; 
dR 

lji(l) = 0 (3b,c) 

a@ (R, z) 
+ V(R,Z)v 

where W(R) is some characteristic weight function to 
UR, z) T be discussed later, and the solution of problem (3) for 

the associated eigenvalues, pis, and eigenfunctions, 

1 tJ’Q(R,Z) 
m 0 < R < 1, Z > 0 (la) 

$!(R), is assumed to be known at this point. 

Pr 2R2 ’ Problem (3) above allows the definition of the 
following integral transform pair : 

with inlet and boundary conditions, respectively 

0 = 
S’ 

W(R)K,(R)O(R, z) dR, transform (4a) 
B(R,O)=l, O<R<l (lb) 0 

50 (R z) ____. 
f3R 

=O; O(l,Z)=O,Z>O (lc,d) 
R=O 

fI(R, Z) = f K,(R)g,(Z), inverse 
,= I 

where various dimensionless groups are given by where the symmetric kernel is given by 

(4b) 

V(R, Z) = ??$!; T(r, z) - T, 
and the normalization integral is obtained from 

o(R, Z) = --.-~-r .; 
e w 

N, = 
s 

W(R)$f(R) dR. (4d) 
0 

Pr = :. 
1 (2) Equation (la) is now operated on with 

Following the formalism in the generalized integral 
transform technique, as applied to the solution of the 

1 
Ki(R) dR 

diffusion problems with variable equation coefficients 
0 

[ 171, the appropriate auxiliary problem is taken as to yield, after substitution of the inverse formula (4b) 
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where 

a8j(z) = 

s 

C’(R, Z)KAR)Od,(W dR (5b) 
0 

&w7 = s dKj(R) VW, Z)&(R)- dR 

dR_ 

(5c) 
0 

SimiIarly, the transformed inlet condition is 
obtained through the operator 

I 

1 
W(R)K,(R) dR 

0 

to provide 

&0)=X= ’ 
s 

H’(R)K;(R) dR. t5d) 
0 

Equations (5) form an infinite system of coupled 
0.D.E.s for the transfo~ed tem~ratures, g,s, which 
is to be truncated at the Nth row and column for 
computation purposes, with N a sufficiently large 
order for convergence to a certain prescribed 
accuracy. Formal aspects behind this truncation pro- 
cess, including an analysis of sufficient conditions for 
convergence and a priori error bounds, have been 
considered in refs. [17,24] and are therefore not 
repeated here. The truncated version of system (5) is 
rewritten in matrix form as 

&W(Z) + B(zl~(z) = 0, Z > 0 (6a) 

y(O) =f (6b) 

where 

v(z) = (0, (3, * *. P &v@7)T (6c) 

A(Z) = {a&)}, is a symmetric N x N matrix (6d) 

B(Z) = {bi@)}, b,(K) = a,, g +@(Z) (6e) 

4, = 
i 

1, i=j 

0, 
. f= {fir.-.rh]T. Ua,W 

i#j’ - 

Since system (6) is likely to yield a stiff O.D.E. 
system, specially for increasing order N, due to the 
relatively different decay rates of the solution vector 
components, y,(Z), subroutine DIVPAG from the 
IMSL package [26], which implements the well-known 
Gear method, is in general preferred. Once the trans- 
formed temperatures have been numerically evalu- 
ated, the inverse formula (4b) is invoked to provide 
the complete temperature distribution, @(R, Z), at any 
point within the duct cross-section. 

Approximate solution 
The approach just presented is an interesting alter- 

native to purely numerical solutions, yielding highly 
accurate fully converged results. It would be extremely 
convenient, however, to also have explicit expres- 
sions available, though approximate, that could 
bring down the computational effort and allow for 
parameter and asymptotic inspections without requir- 
ing a complete numerical solution of the problem. 
This approach was in fact originally developed as an 
attempt to find approximate analytical solutions to 
classes of non-transfo~able problems, and later 
advanced to become a modern hybrid numerical- 
analytical computational tool [24]. Therefore, it 
allows for the establishment of explicit expressions, 
such as the so-called lowest order solution [17,24], 
based on neglecting the contribution of non-diagonal 
elements in the coefficient matrices ; the resulting de- 
coupled O.D.E. system is then readily solved in 
explicit form. For the present application, such an 
approximate solution can be obtained through the 
following decoupled system : 

where 

B,,,(O)=J, i= 1,2 ,... (8b) 

cX-3 = 

E + b;(Z) 

G(z) 
(8~) 

which is readily solved to yield the explicit formula 
after the inversion, equation (4b), is recalled 

The numerical results obtained from equation (8d) 
above will be more or less accurate depending on 
the relative magnitudes of non-diagonal elements in 
matrices A(Z) and B(Z), which might be governed by 
the values of the axial coordinate, Z, and Prandtl 
number, Pr. Clearly, an appropriate choice of eigen- 
value problem, will play an important role in improv- 
ing the approximate solution within certain ranges of 
the governing parameters, Z and Pr, as will be dis- 
cussed later. 

Heat transfer quantities 
Once the temperature profiles have been 

analytically obtained, quantities of practical interest 
in heat exchanger design can be obtained from their 
definitions, such as fluid bulk temperature along the 
duct length 
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Also of interest is the local Nusselt number, evalu- 
ated from 

_4dQ(lZ) 
dR 

Nu,(Z) = e,,(Z) (104 

or alternatively from the heat balance equation 

which is obtained from integration of the energy equa- 

tion over the channel cross-section, and the resulting 
expression for the dimensionless heat flux substituted 
in equation (lOa) above. 

The average Nusselt number is obtained from 

N&(Z) = ; 
z 

s 
Nu(Z) dZ (1 la) 

0 

which by employing the alternative expression (lob) 

for the local Nusselt number, becomes 

Nu,,,,(Z) = -4Pr In (&,,(Z))/Z. (1 lb) 

For fully converged results in the eigenfunction 
expansions, expressions (lOa) and (lob) should yield 
identical numbers, and their comparison can be util- 
ized as a convergence verification. The same can be 

said about equations (11 a) and (11 b) for the average 
Nusselt numbers. 

RESULTS AND DISCUSSION 

Numerical results were obtained over a wide range 

of the dimensionless axial coordinate (Z 2 lo- ‘) and 
for different Prandtl numbers that cover the range of 
practical interest for the present formulation. The 
complete solution of system (6) was obtained with 
N < SO to observe the convergence behaviour and in 
most situations reported, by utilizing Targ’s velocity 

profiles (Appendix) and through the representative 
and simple choice of eigenvalue problem with 
W(R) EE 1. The choice of W(R) = 1 provides an exact 
decoupled solution for the plug flow situation (Pr --t 
0), while a second characteristic choice of the weight 
function could be W(R) = 1 -R’, which yields a 

Graetz-type eigenvalue problem [ 14, 151 that de- 
couples the system for fully developed flow conditions 
(Pr + co). Although the convergence behaviour ofthe 
complete solution is not markedly affected by the 
choice of auxiliary problem, the relative accuracy of 
the lowest order solution is particularly influenced, as 
will be discussed later. 

Table 1 illustrates the convergence behaviour of the 
dimensionless average temperature computed from 
the complete solution for different truncation orders 
(N) and for the two Prandtl numbers, Pr = 0.72 and 
10.0. Clearly, convergence is achieved with a reason- 
ably small number of coupled equations in system (6), 
and requiring an increasing N as Z is decreased. No 

significant effect of the Prandtl number on con- 
vergence rates could be observed, as noticeable for the 

two cases reported in Table 1. Figures I(a) and (b) 
show the convergence behaviour of the average 
Nusselt numbers (Pr = 0.72) as computed from 
equations (11 a) and (11 b), respectively. Although for 

fully converged results the curves for Nu,,,,(Z) and 
Nu,,,,(Z) merge together, the curves for different 

values of N indicate the improved convergence rates 

provided by the heat balance equation, which is due 
to a faster convergence of the average temperature 
expressions over those for the temperature derivative 

at the wall. 
Figure 2 shows a comparison of average Nusselt 

numbers obtained in the present work by utilizing 

approximate explicit velocity profiles, and reference 
results obtained from a finite-difference solution of 
the complete non-linear flow problem and the cor- 

responding decoupled energy equation, available in 
ref. [2]. The practically coincident curves 2 and 3 in 
both figures, indicate the convergence of the analytical 
solution in the range of Z considered, since the 

numerical values of the Nusselt numbers as computed 
from two different expressions, equations (11 a) and 
(11 b), are in agreement. The adoption of Targ’s 
velocity profiles results in reasonably accurate results, 
with increasing deviations as Z is decreased for both 
Pr = 0.72 and 10.0. For instance, around Z = 10M4, 

relative errors are of the order of 13% for Pr = 0.72 

and 8% for Pr = 10.0, and drop down sharply as the 
velocity field develops. The choice of the more general 
linearization procedure proposed by Sparrow et al. 

[7] does not significantly change this picture, as far as 
the average Nusselt number is concerned, as demon- 

strated in Fig. 3. For example, at Z N 10 ‘, the 
adoption of the approximate velocity profiles of 
Sparrow Pt al. [7], brings the average Nusselt number 
down by about 3% only, with a considerable increase 
in computational involvement, especially when 
including the normal convection term, with respect to 

Targ’s profiles [25], which in terms of heat transfer 
quantities appears to be sufficiently accurate for most 
practical purposes. 

The effects of neglecting the normal convection con- 
tribution in the energy equation are investigated 
through Fig. 4 for the local Nusselt number dis- 

tributions. As expected and previously discussed [8], 
for both Pr = 0.72 and 10, the results without the 
normal convection term (k’ = 0) overestimate the heat 
transfer coefficient along the channel, especially at 
regions close to the inlet section. Certainly, the con- 
sideration of normal convection added to the normal 
diffusion effect, tends to make the temperature profiles 
less steep than in the approximate situation of V = 0. 
While the average temperature is not dramatically 
affected, the temperature derivative at the wall is 
sufficiently altered to reduce the local Nusselt number 
by about 19%. at Z = 10p4, for Pr = 0.72, and by 
20%, for Pr = 10. Therefore, previously reported 
numerical results based on neglecting normal con- 
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Table 1. Convergence of dimensionless average temperature for complete solution of system (6) 

891 

Z* 10 

Pr = 0.72 

20 35 50 
N 

5 

5x 1o-4 0.9272 0.9280 0.9283 0.928 1 0.9389 0.9465 0.9470 0.9468 
1x10-’ 0.8964 0.8970 0.8972 0.8971 0.9150 0.9209 0.9213 0.9211 
2x lo-’ 0.8515 0.8520 0.8522 0.8521 0.8760 0.8805 0.8809 0.8807 
5x 1o-i 0.7582 0.7586 0.7587 0.7586 0.7854 0.7886 0.7888 0.7888 
1x10-2 0.6456 0.6459 0.6460 0.6460 0.6695 0.6720 0.6721 0.6721 
2x lo-’ 0.4769 0.4771 0.4771 0.4771 0.4941 0.4958 0.4960 0.4959 
5x 1om2 0.1930 0.1931 0.1931 0.1931 0.1999 0.2006 0.2006 0.2006 
1x10-’ 0.0427 1 0.04273 0.04273 0.04273 0.04424 0.04439 0.04441 0.04440 

Pr= 10 

20 35 50 

Z’ = (z/D.)/(Re Pr). 

vection sould be utilized with care at the inlet region 

[5,81. 
Figure 5 illustrates the relative accuracy of the 

explicit and quite straightforward lowest order solu- 
tion from equation (8d), in terms of local Nusselt 

number distributions for Pr = 0.72. Curves 2 and 3 are, 
respectively, for the two different choices of auxiliary 
problem, with W(R) = 1 -R* and 1. Apparently, 
the eigenvalue problem with W(R) = 1 -R* produces, 
in overall behaviour, a less strongly coupled system, 

especially for increasing 2, when the fully developed 
region is approached. Relative errors are, around 

Z = 10p4, of the order of 30% for the choice 
W(R) = 1 -R* and 40% for W(R) = 1, while around 
Z = lo- 3 the error in curve 2 drops down markedly 
to about 6% and stays around 32% for curve 3 
(W(R) = 1). For increasing Z the error in curve 2 
continues to drop until the asymptotic solution is 
reproduced exactly, whereas the error in curve 3 never 
improves over 7%. Similar trends were observed for 

85.0 , 

Pr = .72; V # 0 

(1) - N = 10 

(2) - N = 35 

FIG. l(a). Convergence of average Nusselt number as computed from equation (1 la) (Pr = 0.72). 

85.0 A 

Pr = .72; V # 0 

(1) - N = 10 

(2) - N = 35 

(3) - N = 50 

FIG. I(b). Convergence of average Nusselt number as computed from equation (1 lb) (Pr = 0.72). 
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Pr = .72: V f 0 

0) - Nucvl(Z) (Present work) 

(2) - Nuav’L(Z) (Present work) 

(3) - Nuavl(Z) (Ref. 2) 

FIG. 2. Comparison of average Nusselt numbers from complete soiution and from a finitedifference 
solution of full momentum and energy equations, in ref. [2] (Pr = 0.72). 

Pr = .72; V = 0 

(1) - U(R,Z) (Ref. 7,) 

(2) - U(R,Z) (Ref.?%) 

FIG. 3. Influence of axial velocity profile choice on average Nusselt number results (Pr = 0.72 ; V = 0). 
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Pr = .72 

(1) -V=O 

(2) - v # 0 

25.0 

Pr = 10. 

(1) - v = 0 

(2) -V#O 

7.5407 

FIG. 4. Effect of neglecting normal convection term on local Nusselt number (Pr = 0.72). 

80.0 
G 
‘5’ 
z 

i \ 

Pr = .72; V f 0 

\ 
(3) 

(1) - CompleteSolution 

(1) (2) - L.O.S.-W(R)=l-R2 

FIG. 5. Accuracy of local Nusselt number results from lowest order solution (L.O.S.) for two different 
choices of eigenvalue problem (Pr = 0.72). 
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the case of Pr = 10, which is not presented due to 
space limitations. This simple approximate solution is 
therefore only recommended for 2 > 5 x lo- 3, and 
with the appropriate choice of the Graetz-type eigen- 
value problem. 

CONCLUSIONS 

The ideas in the generalized integral transform 
technique were successfully utilized in the hybrid 
analytical-numerical solution of simultaneously 
developing laminar channel flow, which represents 
an important class of diffusion<onvection problems 
with non-separable equation coefficients. Explicit 
expressions for the velocity components were 
employed, as obtained from well-established linear- 
ization procedures, and the approximate heat trans- 
fer results are critically compared against those from 
purely numerical approaches, with a quite reasonable 
agreement. 

The present success in extending the generalized 
integral transform technique provides additional ex- 
perience and confidence towards the attempt of directly 
solving the full non-linear versions of such internal con- 
vection problems, by incorporating the also recently ad- 
vanced ideas in the hybrid numerical-analytical solution 
of non-linear diffusion-convection problems [20,24]. 
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APPENDIX. EXPRESSIONS FOR VELOCITY 
COMPONENTS 

The linearization procedure introduced by Targ (25), is in 
fact a special case of the approach advanced by Sparrow et 
al. (7) and consists of approximating the inertia terms as 

(AlI 

The resulting explicit expressions for the velocity com- 
ponents are then given by 

(i(R,7)=:(l-R’)-2~~~~~-l]e-‘~’ (AZ) 

v(R,Z) = 2$,[$$$R]ed’ (A3) 

where G(,S are the positive roots of the transcendental 
equation 

tan d(,--a, = 0. (A4) 
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SOLUTIONS ANALYTIQUES DES DEVELOPPEMENTS SIMULTANES ASSOCIES A UN 
ECOULEMENT LAMINAIRE DANS UN CANAL A PLANS PARALLELES 

R&&+-On itudie analytiquement les ddveloppements simultanes des vitesses et des temperatures pour 
un ecoulement laminaire dans un canal entre plans paralleles, en adoptant une procedure linearisee pour 
le probltme de vitesse et en resolvant l’bquation d’energie decouplee par la technique de transformation 
integrale gtneraliste. Une solution complete est obtenue dans un large domaine de la coordonnee axiale g 
partir de l’bvaluation numirique du systeme transform& integral des equations differentielles. En outre des 
solutions explicites approchbes sont don&es pour des estimations rapides dans le contexte des applications. 
On Ctudie plusieurs aspects tels que l’influence de la convection transverse, les effets de differents profils de 

vitesse, la convergence de la solution complete et la precision des solutions approchees. 

ANALYTISCHE LOSUNG FtrR DIE SICH SIMULTAN AUSBILDENDE 
LAMINARSTROMNG IN EINEM KANAL AUS PARALLELEN PLATTEN 

Zusammenfassung-Die simultane Ausbildung der Geschwindigkeits- und Temperaturverteilung bei 
Laminarstriimung in einem Kanal aus parallelen Platten wird analytisch untersucht. Dabei wird von einer 
Linearisierung des Geschwindigkeitsproblems ausgegangen, die Ldsung der entkoppelten Energiebilanz 
erfolgt mit einem verallgemeinerten Integraltransformationsverfahren. Durch numerische Auswertung des 
so transformierten Systems gewijhnlicher Differentialgleichungen ergibt sich fiir einen weiten Bereich in 
axialer Richtung eine vollstlndige LBsung. Fiir eine schnelle Abschltzung bei der praktischen Anwendung 
werden zusltzlich explizite NLherungslBsungen angeboten. Unterschiedliche Gesichtspunkte werden unter- 
sucht : Beispielsweise der EinfluB einer quergerichteten Konvektion, Effekte durch unterschiedliche Ge- 
schwindigkeitsprofde, Konvergenz der vollstlndigen Lijsung sowie die Genauigkeit der Nlherungsl&mgen. 

AHAJIRTWIECKME PEBIEHIU 3AAA=I PA3BMBAK)ILJEFOCII JIAMIIHAPHOI-0 
TEYEHMR B I-IJIOCKO-IIAPAJIJIEJIbHbIX KAHAJIAX 

Anmrraumr-Donylieno con~ecr~oe ariamrrmreorcoe pemenne ins onpenenemin c~opoma H TeMnepa- 
rypbr B nnocxo-napmenbHoM XaHane, npH 3~0~ B 3anaHe ana CzopocrH Hcnonb30nanacb nHHeapH3a- 
tma, a Hecna3aHHoe ypaerremie 3HeprHH pema3rocb MMOLIOM o606meHHbrx HHTerpaIrbHbrx 
npeo6pa3oeaHHii. Ha 0cHOBe ¶ncJteHHOrO pemeHHa nonyHean0~ CHcreMbr o6br~~o~e~~brx ~@eperr- 
~~bH~XypaaHeHHiiH~e~OnOJul~~meHHe~allUlpOKO~OHHTepa~aB~O~baKCH~bHOiiKOOp~H- 
Harbt. IIp~~0j~ircz Tarmre npH6nHxreHHbre anHbre pemenrin arrs 6bmrpb1x 04eHoz B KOHK~~~~~LX 
lIpHJIOXCCHEiKX. kiCCJEAyio”fCK TaKHC BOlIpOCbi KaK BJlHIlHHe l’IOlI~I.WIIfOii KOHBCKWH Ei pa3JIli~HbiX IIPO- 

+HJICii CKOpOCl&, CXOiHiMOCTb nOJlHOr0 pemeHHa H TO9iOWb iIpki6Ji&iCeHHbiX pL%lh?HHii. 


