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Abstract—Simultaneous development of velocity and temperature distributions for laminar flow inside a
parallel-plate channel is analytically studied, by adopting a linearization procedure for the velocity problem
and solving the decoupled energy equation through the generalized integral transform technique. A
complete solution is obtained within a wide range of the axial coordinate, from numerical evaluation of
the integral transformed system of ordinary differential equations. In addition, approximate explicit
solutions are provided for fast estimates in the context of applications. Several aspects are investigated,
such as influence of transversal convection, effects of different velocity profiles, convergence of complete
solution, and accuracy of approximate solutions.

INTRODUCTION

THE ANALYSIS of simultaneously developing laminar
flows has been of great interest, as demonstrated by
the vast literature available, in connection with a
demand for more precise reference data by heat
exchanger designers [1]. In the famous sourcebook of
reference results [2], Shah and London provide an
extensive list of contributions related to this class of
problems, mostly in simple geometries such as circular
tubes, parallel-plate channels, and annular ducts.
More recent reviews [3, 4], complement such a list and
provide an indication that most previous work has
been directed to circular tube geometry and to
employing some kind of purely numerical technique
to approximately solve the associated flow and energy
equations. A commonly used approach, since the
pioneering work of Kays [5], is that of utilizing explicit
expressions for the velocity components obtained
from linearization of the axial momentum equation,
such as the better known velocity profiles by Langhaar
[6] and Sparrow et al. [7]. The decoupled energy equa-
tion is then numerically solved for the temperature
distribution, eventually after neglection of the radial
convection term {5, 8, 9]. For the specific situation of
a parallel-plate channel, representative contributions
include the integral method approach of Siegel and
Sparrow [10], the finite-differences solutions of
Hwang and Fan [11] and Mercer et al. [12], and the
approximate analytical solution of Han [13].

The exact solution of internal forced convection
problems for the case of fully developed velocity pro-
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files has been recently reviewed and presented in a
systematic way by Mikhailov and Ozisik [14), through
the use of the classical integral transform technique.
This approach was then employed to produce highly
accurate benchmark results for the extended Graetz
problem [15], over a wide range of the dimensionless
axial coordinates, after the related eigenvalue problem
has been automatically and accurately solved by util-
izing the also recently advanced sign-count method
for Sturm-Liouville problems [14]. The approach
described in ref. [14] is not, however, directly applic-
able to the present simultaneously developing flow
problem, due to the non-transformable nature of the
resulting energy equation, which includes non-sep-
arable velocity functions that depend on both the
normal and axial variables. The ideas in the so-called
generalized integral transform technique [16-24] can,
however, be applied to this class of problems to pro-
duce fully converged numerical results, obtained from
a complete solution of the resulting coupled system of
ordinary differential equations for the integral trans-
formed temperature distribution. Besides, approxi-
mate analytical solutions in explicit form are readily
obtainable, which have essentially the same degree of
complexity as the exact solution of the Graetz problem
in refs. [14, 15]. The present note brings this extension
to the generalized integral transform technique, by
considering explicit velocity profiles obtained by Targ
[14,25], which are more easily computable than those
more frequently employed in the literature {6, 7).

ANALYSIS

Simultaneously developing laminar flow of a
Newtonian fluid within a parallei-plate channel is
considered. Physical properties are assumed to be

887



888

J. B. CaMPOS SILVA et al.

D, hydraulic diameter of parallel-plate
channel, 4r,,

h(z) heat transfer coefficient

k thermal conductivity of fluid
N truncation order of system (6)
N, norm of problem (3)

Nu(Z) local Nusselt number, i(z)D /k

Nu,(Z) average Nusselt number
Pr Prandtl number, v/a

r. R normal or transversal coordinate
[dimensional and dimensionless]

Fu half the spacing between parallel-
plates

Re Reynolds number, u,D,/v

T(r, z) temperature distribution [dimensional]

T. uniform inlet temperature

T. prescribed wall temperature

NOMENCLATURE

u(r, z), U(R, Z) axial velocity components
[dimensional and dimensionless]

Uy inlet flow velocity

v(r,z), V(R,Z) normal velocity components
[dimensional and dimensionless]

W(R) weight function of problem (3)
2, Z axial coordinates [dimensional and
dimensionless).
Greek symbols
aQ thermal diffusivity of fluid
a®€, roots of transcendental equation (A4)

O(R,Z) dimensionless temperature distribution

0,(R,Z) lowest order solution (L.O.S.)
i, eigenvalues of problem (3)

v kinematic viscosity

VAR) eigenfunctions of problem (3).

temperature independent and the effects of axial con-
duction, viscous dissipation and free convection are
neglected. The decoupled flow problem is solved by a
linearization procedure, as described in the Appendix,
providing explicit expressions for the axial and normal
components of the velocity field. The related energy
equation is then written in dimensionless form as

80 (R, Z) 08(R,Z)
1 3%0(R
=7>}“73(7t52’m’ in0<R<1,Z>0 (la)

with inlet and boundary conditions, respectively

O(R0)=1, 0<R<I (1b)
30(R, Z)

CR  |r=0o

=0; 01,2)=0,Z>0 (lcd)

where various dimensionless groups are given by

r vz u(r, z)
R=—: Z=—7; URZ)=——;
¥ Ul Ug
v(r, z2)r,, T(r,2)—T,
VR Z)=="2 (R Z) = =2
Pr=". @)
2

Following the formalism in the generalized integral
transform technique, as applied to the solution of the
diffusion problems with variable equation coefficients
[17], the appropriate auxiliary problem is taken as

2
fi(;I’I;(ZR). +ulW(RW(R) =0, 0<R<1! (3a)

with boundary conditions

dy,(0)
iR~ 0; Y,(1)=0 (3b,c)
where W(R) is some characteristic weight function to
be discussed later, and the solution of problem (3) for
the associated eigenvalues, us, and eigenfunctions,
¥.(R), is assumed to be known at this point.
Problem (3) above allows the definition of the

following integral transform pair:

0.2) = Ll W(R)K,(R)O(R, Z) dR, transform  (4a)
(R, Z) = i KAR)G,(Z), inverse (4b)
where the symmetric kernel is given by
K/(R) = ‘/;v(,l? (4c)
and the normalization integral is obtained from
N, = J: W(RW?(R) dR. (4d)

Equation (1a) is now operated on with

J' K(R) dR

to yield, after substitution of the inverse formula (4b)
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- a4
_Z[ VD o ]=—““€(Z) (52)
where
a,(2) = f UR DK(RKE IR (5b)
0
bA(2) = f VR DR A AR (50

Similarly, the transformed inlet condition is
obtained through the operator

1
J W(R)K(R)dR
0
to provide

0.0y =fi= LI W(R)K(R) dR. (54

Equations (5) form an infinite system of coupled
O.D.E.s for the transformed temperatures, 85, which
is to be truncated at the Nth row and column for
computation purposes, with N a sufficiently large
order for convergence to a certain prescribed
accuracy. Formal aspects behind this truncation pro-
cess, including an analysis of sufficient conditions for
convergence and a priori error bounds, have been
considered in refs. [17,24] and are therefore not
repeated here. The truncated version of system (5) is
rewritten in matrix form as

Ay (D+B@YZ) =0, Z>0  (6a)
yoO =1 (6b)
where
YD ={0.D.....002D)" (60)
A(Z) = {a,(Z)}, is a symmetric N x N matrix  (6d)
B(Z) = {br/(a}’ bu(7) ath +b*(Z) (66)
and

i = e BT (ab)

19
.y

Since system (6) is likely to yield a stif O.D.E.
system, specially for increasing order N, due to the
relatively different decay rates of the solution vector
components, y,(Z), subroutine DIVPAG from the
IMSL package [26], which implements the well-known
Gear method, is in general preferred. Once the trans-
formed temperatures have been numerically evalu-
ated, the inverse formula (4b) is invoked to provide
the complete temperature distribution, (R, Z), at any
point within the duct cross-section.

Approximate solution

The approach just presented is an interesting alter-
native to purely numerical solutions, yielding highly
accurate fully converged results. It would be extremely
convenient, however, to also have explicit expres-
sions available, though approximate, that could
bring down the computational effort and allow for
parameter and asymptotic inspections without requir-
ing a complete numerical solution of the problem.
This approach was in fact originally developed as an
attempt to find approximate analytical solutions to
classes of non-transformable problems, and later
advanced to become a modern hybrid numerical-
analytical computational tool [24]. Therefore, it
allows for the establishment of explicit expressions,
such as the so-called lowest order solution [17,24],
based on neglecting the contribution of non-diagonal
elements in the coefficient matrices ; the resulting de-
coupled O.D.E. system is then readily solved in
explicit form. For the present application, such an
approximate solution can be obtained through the
following decoupled system:

%Q +€§(Z)gf,i(z) =0, 2>0 (8a)
0.0=F. i=12.. (b
where
Ko
Pr +b6}2Z)
cHZ) = a2 (&)

which is readily solved to yield the explicit formula
after the inversion, equation (4b), is recalled

X 4
0,(R,Z) = ¥ K(R)] exp {— f eXZ) dZ’}.
=1 0
(8d)

The numerical results obtained from equation (8d)
above will be more or less accurate depending on
the relative magnitudes of non-diagonal elements in
matrices A(Z) and B(Z), which might be governed by
the values of the axial coordinate, Z, and Prandtl
number, Pr. Clearly, an appropriate choice of eigen-
value problem, will play an important role in improv-
ing the approximate solution within certain ranges of
the governing parameters, Z and Pr, as will be dis-
cussed later.

Heat transfer quantities

Once the temperature profiles have been
analytically obtained, quantities of practical interest
in heat exchanger design can be obtained from their
definitions, such as fluid bulk temperature along the
duct length

0..(Z) = j U(R, 2)0(R, Z) dR. ®
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Also of interest is the local Nusselt number, evalu-
ated from

201, 2)
_OR
0..(2)

or alternatively from the heat balance equation
db,.(Z)

0z
0,(2) (100
which is obtained from integration of the energy equa-
tion over the channel cross-section, and the resulting
expression for the dimensionless heat flux substituted
in equation (10a) above.
The average Nusselt number is obtained from

—4
Nuy(Z) = -

(10a)

—4Pr

Nuy(Z) =

1 4
Nu, (Z) = 2 L

which by employing the alternative expression (10b)
for the local Nusselt number, becomes

NuMJ(Z) = —4Pr ln (Ouv(z))/z (] lb)

For fully converged results in the eigenfunction
expansions, expressions (10a) and (10b) should yield
identical numbers, and their comparison can be util-
ized as a convergence verification. The same can be
said about equations (11a) and (11b) for the average
Nusselt numbers.

Nu(Z)dz (11a)

RESULTS AND DISCUSSION

Numerical results were obtained over a wide range
of the dimensionless axial coordinate (Z > 10~ °) and
for different Prandtl numbers that cover the range of
practical interest for the present formulation. The
complete solution of system (6) was obtained with
N < 80 to observe the convergence behaviour and in
most situations reported, by utilizing Targ’s velocity
profiles (Appendix) and through the representative
and simple choice of eigenvalue problem with
W(R) = 1. The choice of W(R) = 1 provides an exact
decoupled solution for the plug flow situation (Pr —
0), while a second characteristic choice of the weight
function could be W(R) = 1—R? which yields a
Graetz-type eigenvalue problem [14, 15] that de-
couples the system for fully developed flow conditions
(Pr — ). Although the convergence behaviour of the
complete solution is not markedly affected by the
choice of auxiliary problem, the relative accuracy of
the lowest order solution is particularly influenced, as
will be discussed later.

Table 1 illustrates the convergence behaviour of the
dimensionless average temperature computed from
the complete solution for different truncation orders
(N) and for the two Prandtl numbers, Pr = 0.72 and
10.0. Clearly, convergence is achieved with a reason-
ably small number of coupled equations in system (6),
and requiring an increasing N as Z 1s decreased. No
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significant effect of the Prandtl number on con-
vergence rates could be observed, as noticeable for the
two cases reported in Table 1. Figures 1(a) and (b)
show the convergence behaviour of the average
Nusselt numbers (Pr = 0.72), as computed from
equations (11a) and (11b), respectively. Although for
fully converged results the curves for Nu,, (Z) and
Nu,, ,(Z) merge together, the curves for different
values of N indicate the improved convergence rates
provided by the heat balance equation, which is due
to a faster convergence of the average temperature
expressions over those for the temperature derivative
at the wall.

Figure 2 shows a comparison of average Nusselt
numbers obtained in the present work by utilizing
approximate explicit velocity profiles, and reference
results obtained from a finite-difference solution of
the complete non-linear flow problem and the cor-
responding decoupled energy equation, available in
ref. [2]. The practically coincident curves 2 and 3 in
both figures, indicate the convergence of the analytical
solution in the range of Z considered, since the
numerical values of the Nusselt numbers as computed
from two different expressions, equations (11a) and
(11b), are in agreement. The adoption of Targ’s
velocity profiles results in reasonably accurate results,
with increasing deviations as Z is decreased for both
Pr =0.72 and 10.0. For instance, around Z = 10~
relative errors are of the order of 13% for Pr =0.72
and 8% for Pr = 10.0, and drop down sharply as the
velocity field develops. The choice of the more general
linearization procedure proposed by Sparrow et al.
[7] does not significantly change this picture, as far as
the average Nusselt number is concerned, as demon-
strated in Fig. 3. For example, at Z ~ 10 ° the
adoption of the approximate velocity profiles of
Sparrow et al. [7], brings the average Nusselt number
down by about 3% only, with a considerable increase
in computational involvement, especially when
including the normal convection term, with respect to
Targ’s profiles [25], which in terms of heat transfer
quantities appears to be sufficiently accurate for most
practical purposes.

The effects of neglecting the normal convection con-
tribution in the energy equation are investigated
through Fig. 4 for the local Nusselt number dis-
tributions. As expected and previously discussed [&],
for both Pr=10.72 and 10, the results without the
normal convection term (V' = 0) overestimate the heat
transfer coefficient along the channel, especially at
regions close to the inlet section. Certainly, the con-
sideration of normal convection added to the normal
diffusion effect, tends to make the temperature profiles
less steep than in the approximate situation of ¥ = 0.
Whiie the average temperature is not dramatically
affected, the temperature derivative at the wall is
sufficiently altered to reduce the local Nusselt number
by about 19%, at Z = 107*, for Pr=0.72, and by
20%, for Pr = 10. Therefore, previously reported
numerical results based on neglecting normal con-
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Table 1. Convergence of dimensionless average temperature for complete solution of system (6)

Pr=10.72 N Pr=10
VA 10 20 35 50 S 20 35 50
5x107* 0.9272 09280 0.9283  0.9281 0.9389 09465 09470  0.9468
1x1073 0.8964 0.8970 0.8972 0.8971 0.9150 09209 09213 0.9211
2x1073 0.8515 0.8520 0.8522 0.8521 0.8760  0.8805  0.8809  0.8807
5x107°? 0.7582  0.7586  0.7587 0.7586 0.7854 0.7886  0.7888  0.7888
1x1072 0.6456  0.6459 0.6460  0.6460 0.6695  0.6720 0.6721  0.6721
2x1072 0.4769 04771 04771 04771 04941 04958 04960  0.4959
5% 1072 0.1930  0.1931  0.1931  0.1931 0.1999 0.2006 0.2006  0.2006
1x107! 0.04271 0.04273 0.04273 0.04273 0.04424  0.04439 0.04441 0.04440

Z* = (z/D.)/(Re Pr.

vection sould be utilized with care at the inlet region
[5, 8].

Figure 5 illustrates the relative accuracy of the
explicit and quite straightforward lowest order solu-
tion from equation (8d), in terms of local Nusselt
number distributions for Pr = 0.72. Curves 2 and 3 are,
respectively, for the two different choices of auxiliary
problem, with W(R)=1—R? and 1. Apparently,
the eigenvalue problem with W(R) = 1~ R? produces,
in overall behaviour, a less strongly coupled system,

especially for increasing Z, when the fully developed
region is approached. Relative errors are, around
Z=10"% of the order of 30% for the choice
W(R) = 1 —-R? and 40% for W(R) = 1, while around
Z = 1073 the error in curve 2 drops down markedly
to about 6% and stays around 32% for curve 3
(W(R) = 1). For increasing Z the error in curve 2
continues to drop until the asymptotic solution is
reproduced exactly, whereas the error in curve 3 never
improves over 7%. Similar trends were observed for

85.0
g
< U
g -1
z ]
.
45.0 A
5.00 . T lllllls; T R LELBLELELLE ) a2 1 L} lllllg‘ T Ll |l|lll1
10~ 10~ - 10~
=z/De/RePr

FiG. 1(a). Convergence of average Nusselt number as computed from equation (11a) (Pr = 0.72).

85.0
—~ ]
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°>‘ 4
O -4
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z -
45.0 A
5-0 L} lllllll| ¥ L T T 11TV} T L] IlllTl]i T L L LB RS
10 10~ - - 1

Z=2/De/RePr

FiG. 1(b). Convergence of average Nusselt number as computed from equation (11b) (Pr = 0.72).
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- ] @) Pr= 72,V =0
3 ]
5 45.0
g ]
=z 3 (1) — Nuav1(Z) (Present work)
E {2) — Nuav2(Z) (Present work)
25.0 (3) — Nuavi(Z) (Ref. 2)
5-0 ; . ) 1 1 LN e ) '1'0[ 3 L L) L] T T 11|0| 2 T L} 1) L) LN ) ]1|0 "
10 - N - -
Z=z/De/RePr
150.0 2
X Pr=10;V# 0
8 E (1) — Nuav1(Z) (Present work)
b ]
§‘°°-° 1 ® (2) — Nuav2(Z) (Present work)
] (3) — Nuavi(Z) (Ref. 2)
]
50.0
Oto . ¥ ¥ ¥ "ll" ¥ 1 ¥ l“.l' + 1 |||III‘ L] 1 LRI
10 10 107 10 ~* 107

Z=2/De/RePr

FiG. 2. Comparison of average Nusselt numbers from complete solution and from a finite-difference
solution of full momentum and energy equations, in ref. [2] (Pr = 0.72).
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F1G. 3. Influence of axial velocity profile choice on average Nusselt number results (Pr=0.72; ¥V = 0).
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FiG. 4. Effect of neglecting normal convection term on local Nusselt number (Pr = 0.72).
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FiG. 5. Accuracy of local Nusselt number results from lowest order solution (L.O.S)) for two different
choices of eigenvalue problem (Pr = 0.72).
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the case of Pr = 10, which is not presented due to
space limitations. This simple approximate solution is
therefore only recommended for Z > 5x 1077, and
with the appropriate choice of the Graetz-type eigen-
value problem.

CONCLUSIONS

The ideas in the generalized integral transform
technique were successfully utilized in the hybrid
analytical-numerical solution of simultaneously
developing laminar channel flow, which represents
an important class of diffusion—convection problems
with non-separable equation coefficients. Explicit
expressions for the velocity components were
employed, as obtained from well-established linear-
ization procedures, and the approximate heat trans-
fer results are critically compared against those from
purely numerical approaches, with a quite reasonable
agreement.

The present success in extending the generalized
integral transform technique provides additional ex-
perience and confidence towards the attempt of directly
solving the full non-linear versions of such internal con-
vection problems, by incorporating the also recently ad-
vanced ideas in the hybrid numerical-analytical solution
of non-linear diffusion—convection problems [20, 24].
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APPENDIX. EXPRESSIONS FOR VELOCITY
COMPONENTS

The linearization procedure introduced by Targ (25), is in
fact a special case of the approach advanced by Sparrow ez
al. (7), and consists of approximating the inertia terms as

Ju ﬁu ou

L= Uos

iz or ‘ez Al

The resulting explicit expressions for the velocity com-
ponents are then given by

U(R,Z) = 3(1 - R?)+2 Z = [%RJ I}ﬂgz (A2)
sin (a,R) e
k2= znzl [ac cos a, le e’ (A3)

where o,s are the positive roots of the transcendental
equation

tan o, —a, = 0. (Ad)
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SOLUTIONS ANALYTIQUES DES DEVELOPPEMENTS SIMULTANES ASSOCIES A UN
ECOULEMENT LAMINAIRE DANS UN CANAL A PLANS PARALLELES

Résumé—On étudie analytiquement les développements simultanés des vitesses et des températures pour
un écoulement laminaire dans un canal entre plans paralléles, en adoptant une procédure linéarisée pour
le probléme de vitesse et en résolvant 'équation d’énergie découplée par la technique de transformation
intégrale généralisée. Une solution compléte est obtenue dans un large domaine de la coordonnée axiale &
partir de I’évaluation numérique du systéme transformé intégral des équations différentielles. En outre des
solutions explicites approcheées sont données pour des estimations rapides dans le contexte des applications.
On étudie plusieurs aspects tels que I'influence de la convection transverse, les effets de différents profils de
vitesse, la convergence de la solution compléte et la précision des solutions approchées.

ANALYTISCHE LOSUNG FUR DIE SICH SIMULTAN AUSBILDENDE
LAMINARSTROMNG IN EINEM KANAL AUS PARALLELEN PLATTEN

Zusammenfassung—Die simultane Ausbildung der Geschwindigkeits- und Temperaturverteilung bei
Laminarstromung in einem Kanal aus parallelen Platten wird analytisch untersucht. Dabei wird von einer
Linearisierung des Geschwindigkeitsproblems ausgegangen, die Lsung der entkoppelten Energiebilanz
erfolgt mit einem verallgemeinerten Integraltransformationsverfahren. Durch numerische Auswertung des
so transformierten Systems gewdéhnlicher Differentialgleichungen ergibt sich fiir einen weiten Bereich in
axialer Richtung eine vollstindige Losung. Fir eine schnelle Abschitzung bei der praktischen Anwendung
werden zusétzlich explizite Ndherungsldsungen angeboten. Unterschiedliche Gesichtspunkte werden unter-
sucht: Beispielsweise der Einflu einer quergerichteten Konvektion, Effekte durch unterschiedliche Ge-
schwindigkeitsprofile, Konvergenz der vollstindigen Losung sowie die Genauigkeit der Niherungslosungen.

AHAJTUTUYECKHE PEIIEHUWA 3AJJAY PA3IBUBAIOMETOCH JTIAMHUHAPHOIO
TEYEHHUSA B IIIOCKO-TIAPAJINTENBHBIX KAHAJIAX

Amnoranas—IlonyueHO COBMECTHOE aHANMTHYECKOE PElUEHHe MUl ONpPeAescHAs CKOPOCTH H TeMIepa-
TYPBI B IUIOCKO-NAPAJLIENBHOM KaHaJjI€, IPH 3TOM B 3afia4e Ul CKOPOCTH HCIONIb30BaNach JIMHEAPH3A-
LM, @ HECBA3aHHOE YpaBHCHHE OJHCPIHH pENIANOCh METONOM OGOOLICHHBIX HMHTErPAILHBIX
npeobpasosannii. Ha 0CHOBE WHCIIGHHOrO PEIUCHHA MOJYYEHHON CHCTEMBI OGBIKHOBEHHBIX mH(Peper-
UMANBHBIX yPaBHEHHH HaHIEHO NONHOE pellleHne IS IMHPOKOro HHTEPBANA BAOAL aKCHAILHOM KOOpIH-
Hathl. TlpuBonsTca Taxkxe NpHONMXEHHBIC ABHBIE DEIUEHMA [UIA OLICTDBIX OLEHOK B KOHKPETHBIX
npuiokenuax, Mocnenyrorcs Takie BONPOCH XaK BIMAHHE NONEPEHHOH KOHBEKIMH ¥ PAIIHYHBIX OPO-
tuneii cropocrelt, CXOAHMOCTD TIONHOTO PELICHNS B TOYHOCTH NPHOAMKEHHBIX pelicHnit.
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